Roadway Prototypes and Cost Estimates

Roadway Improvement Phases

Phase 1 – Spot improvements at ATCs

 Phase 2 – Improvement to shoulders, utility pole relocation

Phase 3 – Flooding improvements

Roadway Improvement Phases

Phase 1 – Spot improvements at ATCs

 Phase 2 – Improvement to shoulders, utility pole relocation

Phase 3 – Flooding improvements

Roadway Improvement Phases

Phase 1 – Spot improvements at
 ATCs

 Phase 2 – Improvement to shoulders, utility pole relocation

Phase 3 – Flooding improvements

Circulation Plan

- Considerations:
 - Cost-effective solution to create visitor-friendly environment
 - Reduce speed
 - Improve pedestrian crossings and pathways
 - Increase safety for turning movements
 - Accommodate vehicles entering and exiting ATCs
 - Define setbacks for utility poles

- Placement of street trees
- Widening of shoulders
- Relocation of utility poles
- Placement of two way left turn lanes
- Crosswalks

- Signage
- Vehicle actuated speed signs
- Curbs or fencing
- Roadway striping
- Decomposed granite walkways

- Typical ATC Prototype
 - Street trees, wider travel lanes, shoulders, signage, curbs or fencing to mark parking entrances/exits, utility pole relocation

Gomer School ATC Prototype

Gomer School ATC Prototype

Gomer School ATC Prototype

Roadway Prototypes

Gomer School ATC Prototype

Morrison Lane ATC Prototype

Morrison Lane ATC Prototype

Morrison Lane ATC Prototype

Roadway Prototypes

Morrison Lane ATC Prototype

Mankas Corner ATC Prototype

Roadway Prototypes

Mankas Corner ATC Prototype

Mankas Corner ATC Prototype

Parallel Parking

Mankas Corner ATC Prototype

Perpendicular Parking – Would need further study on size

Timeframe: Within 0-10 years

ATC Prototype Costs

- Gomer School
 - \$1.5 million per mile, plus \$425,000
 - Total: 0.1 mile, \$576,000
- Morrison Lane
 - \$1.8 million per mile, plus \$484,000
 - Total: 0.1 mile, \$669,000
- Mankas Corner
 - \$1.1 million per mile, plus \$597,000
 - Total: 0.2 mile, \$808,000

- Typical Approach Prototype
 - Street trees, wider travel lanes, shoulders, pavement markings, signage

Gomer School Approach Prototype

Roadway Prototypes

Gomer School Approach Prototype

Morrison Lane Approach Prototype

Roadway Prototypes

Morrison Lane Approach Prototype

Mankas Corner Approach Prototype

Roadway Prototypes

Mankas Corner Approach Prototype

Timeframe: Within 5-10 years

Approach Prototype Costs

- Gomer School
 - \$1.2 million per mile, plus \$576,000
 (earthwork, utilities, landscaping, drainage, contingency, acquisition)
 - Total: 0.4 mile, \$1.4 million
- Morrison Lane
 - \$838,000 per mile, plus \$455,000
 - Total: 0.2 mile, \$623,000
- Mankas Corner
 - \$1.1 million per mile, plus \$886,000
 - Total: 0.3 mile, \$1.2 million

- Points to discuss
 - What triggers Phase 1 improvements
 - Priorities for Phase 1 improvements
 - Priorities for on-street parking
 - Methods to indicate entrances/exits

Circulation Plan

- Considerations:
 - No or minimal shoulders
 - Steep side slopes
 - Narrow travel lanes and bridges
 - Utilities within right-of-way
 - Bicycle safety

Planning for a Sustainable Solano County

- Design side slopes appropriately
- Add retaining wall with guardrail where steep
- Relocate utility poles
- Widen bridges to accommodate bicyclists and vehicles safely
- Accommodate bicycles and pedestrians on roundabout

- Typical Section
 - New shoulders, bike lanes, widened lanes, corrected side slopes, railings

Phase 2 – Roundabout Improvements

- Abernathy Road
 - 3.5 miles
- Mankas Corner Road
 - 1.9 miles
- Timeframe: 10+ years
- Costs
 - Clearing, materials, retaining wall, signage, striping, bike lane expansion, roundabout modification
 - \$4.6 million per mile plus \$11 million (earthwork and drainage allowances, contingency, right-of-way acquisition)
 - Total: \$48 million

- Rockville Road
 - 3.1 miles
- Suisun Valley Road
 - 6.5 miles

Circulation Plan

- Considerations:
 - Flooding on Abernathy and Rockville roads
 - Utility pole placement
 - Potentially high cost to prevent occasional flooding and could compound other flooding problems

- Raise road to 1-foot above 100-year flood level
- Modify storm drainage system
 - Culverts to allow conveyance of water from one side of the road to the other and under driveways
 - Add drainage swales along the roadway

Timeframe: 20+ years/funding

Costs:

- Abernathy Road
 - \$1.8 million per mile, plus \$11 million (earthwork, utility, landscaping, drainage allowances, and contingency)
 - Total: 2.49 miles, \$15.5 million
- Rockville Road
 - \$2.0 million per mile, plus \$3.3 million
 - Total: 0.67 mile, \$4.6 million

Circulation Plan

Discussion:
Roadway Improvement Phasing

